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Abstract	  
Purpose: Although safe at therapeutic levels, excess intake of acetaminophen 
can lead to hepatic injury or acute liver failure (ALF).    A number of different 
factors influence metabolism and hepatotoxicity of acetaminophen in patients.  
Three of the most important are a patient’s physiological response to fasting, 
alcohol consumption and chronic acetaminophen consumption.  The molecular 
and enzymatic underpinnings for these processes have been extensively studied.  
The purpose of this study is to examine and quantify the effects of the noted 
conditions, provide possible reasons for conflicting clinical observations, and 
examine dangers associated with uptake of therapeutic doses of acetaminophen.  
Methods: In order to gain a better understanding of the transient hepatic 
changes associated with each physiological and nutritional process, examine 
risks of ALF associate with individuals based on their unique lifestyle and health 
issues, and predict improved dosing strategies, a multi-compartmented 
physiology-based pharmacokinetic (PBPK) model of acetaminophen metabolism 
in adult humans was developed.  By varying the parameters of this model 
changes in metabolism of acetaminophen and its toxic byproducts for a variety of 
medically relevant conditions were assessed.   
Results: Predicted results indicate that in case of chronic ingestion of 
acetaminophen, the increased rate of glucuronidation plays a significant role in 
protecting patients from liver damage following uptake of excessive quantities.  
Analysis of metabolism of acetaminophen in persons who have imbibed 
excessive amounts of alcohol show that the primary reason for hepatotoxicity in 
such individuals is decreased availability of glutathione in the liver and not the 
observed increased production of toxic byproducts.  When the glutathione 
depleting effects of alcohol consumption are combined with those associated 
with chronic acetaminophen use, intake of slightly higher quantities than the 
recommended therapeutic doses of acetaminophen can result in initiation of 
hepatotoxicity. 
Conclusions:  The results of simulations show that, in healthy and well-fed 
individuals, chronic uptake of acetaminophen doses even five times the 
therapeutic recommendations should be safe.  However, in persons who have 
diminished hepatic glutathione regeneration capacities, depending on the 
magnitude of this deleterious shortcoming, minor overdoses can result in 
hepatotoxicity. Hence, it can be concluded that for such persons, acetaminophen 
is just as toxic as any other compound that would generate reactive oxidative 
species.  
Keywords:  Pharmacokinetic modeling, PBPK, acetaminophen, Acute liver 
failure, ADMET, alcohol, malnutrition 

Background	  
Acetaminophen (a.k.a. paracetamol, acetyl-para-aminophenol) (APAP) is a 
popular over-the-counter analgesic and antipyretic drug.  By one estimate, 36% 



of Americans use at least one tablet of APAP per month (Gregory et al., 2010); 
and in United Kingdom an average of 55 tablets per person are consumed each 
year (Jones, 1998).   
At therapeutic levels, acetaminophen is generally safe for humans (Thomas, 
1993), however, over self-medication (for therapeutic or suicidal intentions) or 
excess prescription of APAP due to incorrect assessment of risks to patients with 
unique physiological determinants (McQuade et al., 2012) can result in 
acetaminophen poisoning, dose-dependent hepatotoxicity and possibly ALF.  
Unfortunately, ALF is a common outcome.  APAP poisoning is the leading cause 
of ALF in the United States (Schiødt et al., 2003) and some European countries 
(Larsen et al., 1995; Bernal, 2003).  
The hepatotoxic agent in these cases is a byproduct of APAP metabolism.  As 
part of phase II drug metabolism, the bulk fraction of APAP is glucuronidated 
(APAP-G) and sulfated (APAP-S) to form conjugates that are more water-soluble 
than APAP.  These compounds are primarily excreted through urine (Bessems 
and Vermeulen, 2001).  Approximately 55 and 30 percent of the administered 
drug is excreted via urine as APAP-G and APAP-S respectively (Howie et al., 
1977). 
However, during phase I metabolism, a small fraction of APAP (~5-15%) is 
oxidized by liver microsomal cytochrome P-450s (CYP) to form a toxic byproduct 
N-acetyl-p-benzoquinone imine (NAPQI).  The cytochromes involved in oxidation 
of APAP are CYP2E1(Raucy et al., 1989; Lee et al., 1996), CYP3A4 (Thummel 
et al., 1993), CYP2D6 (Dong et al., 2000), CYP1A2 (Raucy et al., 1989) and 
CYP2A6 (Chen et al., 1998).  CYP2E1 is the primary enzyme catalyzing the 
production of NAPQI at lower APAP concentrations.  In CYP2E1 mutant mice, 
the animals display much greater tolerance to APAP than wild type animals, and 
only at high concentrations (>600 mg/kg) they display signs of significant toxicity 
(Lee et al., 1996). NAPQI produced as a result of uptake of a normal dose of 
APAP is rapidly detoxified through conjugation with molecules of the glutathione 
(GSH) antioxidant.  However, if the store of GSH in the liver dips below 30-20% 
of its normal value, NAPQI will begin to accumulate, bind to various liver proteins, 
and cause liver damage (Mitchell et al., 1973). 
A number of different factors influence metabolism and hepatotoxicity of APAP in 
patients.  These include age (Miller et al., 1976), genetics (Ueshima et al., 2006), 
concurrent uptake of other drugs (Toes et al., 2005), viral infections (Barbaro et 
al., 1996; Moling et al., 2006), alcohol use (Schiødt et al., 2002), 
fasting/starvation (Whitcomb and Block, 1994), and tobacco use (Schmidt and 
Dalhoff, 2003). 
This manuscript reports the development and utilization of a multi-
compartmented physiology-based pharmacokinetic (PBPK) model of APAP 
metabolism in average adult humans to predict the time-course of changes in 
liver GSH levels following fasting, chronic APAP use, and alcohol consumption. 
Model simulations have been used to quantify the enhancing or reducing 



influence of each of the above noted lifestyle choices on the possibility of 
inducing hepatotoxicity following use of APAP.   

Methods	  
Whole-body PBPK models provide a framework for integrating and interpreting 
data from disparate sources in order to predict the time-course of xenobiotic 
metabolism. PBPK models dynamically simulate outcome of metabolism of 
various therapeutic and/or toxic compounds on the basis of their structure and 
other important physiological input parameters such as tissue volumes, organ 
composition, blood flow rate and system-level clearance rates.  Thus, PBPK 
models are ideal tools for assessing toxicological risks early in the drug 
development pipeline (Clark et al., 2004).   
1.  Mathematical formulation 

In the majority of PBPK models, the mammalian body is treated as a series of 
well stirred homogenous compartments that are connected to one another via 
arterial and venous blood flow.  The rates of biochemical processes, including 
metabolism, are modeled at different levels of detail depending on the quality and 
availability of various kinetic and physiological parameters.   
In most PBPK models, the transient change in each compound’s concentration in 
each organ is formulated mathematically as: 
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where !!!(!) denotes the concentration of compound i in compartment α; !!!"(!) 
represents the concentration of the compound i in the arterial blood; !! is the 
volume of compartment α; !! is the blood flow into compartment α; !!! and !!! are 
the amounts of drug i that are directly imported and removed from compartment 
α, respectively. !!

!:!"#$%# and BP are the tissue plasma partition coefficient and 
blood to plasma ratio respectively.   Blood, skin, gut, and lung are the primary 
routes of introducing compounds into a system and hence might have a non-zero 
value for the term !!!

! !
!"

.  Introduction of a compound into a compartment with a 
single injection can be represented by the Dirac delta function such that: 
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where D denotes the dose.  For single uptakes δ(t)=1 at t=t0 and zero at all other 
times.  For regular periodic uptakes: δ(t)=1 at t=nT, where n is an integer 
(n=0,1,2…) and T is the interval between uptakes in minutes; δ(t)=0 at all other 
times. 

For non-eliminating tissues !!!
!(!)
!"

= 0.  In the eliminating organs, such as liver 

and kidney, the value of !!!
!(!)
!"

 depends on the mode of elimination.  If a 



compound is metabolized then the simplest formulations would involve 
introduction of first order kinetics such that: 
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For non-enzymatic or bulk elimination one can use: 
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In equation 3 the drug is metabolized at a rate dependent on the concentration of 
drug in the tissue and a constant, k.  In equation 4, a fraction of the drug (E<1) 
that is entering the tissue is extracted (Poulin and Theil, 2002b).  For cases 
where one would need to account for affinity of a compound binding to a 
catalyzing enzyme, equation 3 can be changed to: 
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where Km,i,j represents the Michaelis-Menten coefficient for interaction of drug i 
with enzyme j, n denotes the number of enzymes in compartment α that can 
catalyze breakdown of drug i, and Vmax,i,j represents the maximum rate of 
metabolism of drug i by enzyme j.  
2.  Normal APAP metabolism  

A 14-compartment model of human physiology (see Figure 1), where the various 
tissues are connected by the blood circulatory system, was developed.  The 
collection of ODEs that make up the model was solved by using the Mathematica 
suite of programs (version 9.0, Wolfram Research Inc., Champaign, IL).  The 
non-drug specific system parameters are from (Luttringer et al., 2003) (see Table 
1).  The tissue-specific APAP partition coefficients were calculated using the 
formula proposed by Poulin and coworkers (Poulin and Theil, 2000; Poulin et al., 
2001).  The BP value for APAP was set to one (Poulin and Theil, 2002a).  The 
model contains two eliminating tissues, liver and kidney.  To model APAP 
metabolism and excretion, equation 4 is used to account for non-enzymatic 
export of compounds (kidney), and equation 5 accounts for the enzymatic 
breakdown (liver) of the drug.  In the model the latter formulation accounts for 
three enzymatic processes, APAP glucuronidation, sulfation and oxidation; the 
last results in formation of NAPQI.  The kinetic parameters for the glucuronidation 
and sulfation reactions are from (Reith et al., 2009).  The average person was 
assumed to weigh 70 kg.  The Vmax value for the oxidation reaction is based on 
measurements from (Mitchell et al., 1973).  For drug excretion via urine we set 
!!"!"
!"#$%& = 0.02 (Larson, 2007).  Studies have shown the bioavailability of APAP 

after consuming pills is about 79% (Ameer et al., 1983);  thus, for cases when 
APAP is taken orally, we used this value for our simulations. 
3.  GSH metabolism 

For simulations of !!"#!"#$%(!), we use the equation: 
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where kII is the bimolecular interaction constant for NAPQI and GSH.  !!"#!"#$% 
represents a coefficient for production GSH in the liver.  Synthesis of GSH in the 
liver has been extensively examined, and a number of different factors that 
regulate normal and stressed production of GSH have been studied (Griffith, 
1999; Lu, 1999; Wu et al., 2004).  However, these kinetic alterations have not 
been fully quantified.  This formulation for generation of GSH is similar to those 
incorporated in other models (Chen and Gillette, 1988).  It does not permit 
!!"#!"#$%(!) to exceed the normal concentration of GSH in the liver (!!"#!"#$%(0)), and 
the rate of regeneration is directly proportional to depletion of GSH levels. The 
value of !!"#!"#$% was optimized so that a single uptake of APAP greater than 15 g 
would result in greater than 70% depletion of liver GSH pool and initiate hepatic 
damage (Rumack, 2002).  Although it has been shown that concentration (Smith 
et al., 1979) and rates of metabolism of GSH vary in different regions of the liver 
(Kera et al., 1988; Penttilä, 1990), this level of detail has not been incorporated 
into the model, and as noted earlier, the liver is assumed to be a well-mixed 
single compartment. 
4. Modeling chronic APAP uptake  

When modeling chronic uptake of APAP, uptake of various doses were simulated 
at regular 6-hour intervals.  Experiments have shown that chronic uptake of 
APAP alters the routes of APAP metabolism.  Due to cofactor depletion, 
clearance via sulfate formation is lowered while clearance through 
glucuronidation is increased (Hendrix-Treacy et al., 1986; Gelotte et al., 2007).  
Since liver concentrations of UDP-glucuronosyltransferase or sulfation cofactors 
are not explicitly solved in the model, this phenomenon was modeled by 
multiplying the Vmax for the glucuronidation and sulfation by coefficients Cog and 
Cos, respectively.  This results in modification of the overall clearance via APAP-
G and APAP-S production. The experimentally measured changes in routes of 
clearance (Gelotte et al., 2007) were used to calculate the maximum values of 
Cog and Cos. Since the time course of induction of UDP-glucuronosyltransferase 
and depletion of sulfate stores in liver are not well understood and differ based 
on diet and numerous other factors, the value of Cog and Cos were made time-
dependent such that: 
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Cog=Cos=1 when t=0 and δ(t)=1 when t≤4320 minutes and δ(t)=0 when t>4320.  
Thus, in the simulations the time course for observed changes in metabolism of 
APAP is 3 days (4320 minutes).  This length of time matches the first time point 
for which changes in routes of APAP metabolism were observed experimentally 
(Gelotte et al., 2007).  The values for !!!!"# and !!!!"# for different doses of 
APAP are reported in Table 2.  



Experimental data show that diversion of APAP to glucuronidation increases as 
the dose increases from 1 g to 2 g every 6 hours (Gelotte et al., 2007), but it is 
not clear if the pattern holds for higher doses.  Because of this uncertainty, for 
chronic ingestion of doses greater than 2 g, levels of induction similar to that of 2 
g doses were used.   
5. Effects of alcohol on APAP metabolism  

Alcohol ingestion stimulates production of NAPQI through induction of CYP2E1 
enzyme and this effect can last up 5 days in humans after drinking has stopped 
(Perrot et al., 1989; Takahashi et al., 1993).  For simulations of APAP 
metabolism after drinking alcohol, results from a study (Thummel et al., 2000) 
that found excessive alcohol consumption (continual blood alcohol concentration 
of 3 g/L for 200 hours, similar to consuming nearly 14 Liters of 80 proof spirits in 
less than 9 days) increases CYP2E1 concentration by a factor of 2.14 were used.  
For simulations of APAP metabolism in alcoholics or binge drinkers, the 
maximum enhancement in the activity of the CYP2E1 was assumed.  Hence, the 
normal Vmax for the NAPQI production was multiplied by the above noted value 
(!!!"#$!"# = 2.14).  Half-life for recovery of CYP2E activity after alcohol ingestion is 
about 60 hours (Imai et al., 2011).  As with changes associated with chronic 
APAP use, the CYP induction by ethanol was made to be linearly time dependent 
such that: 
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and δ(t)=1 when t≤7200 minutes and δ(t)=0 when t>7200.   
Chronic alcoholics also have been shown to have significantly lower 
concentrations of hepatic GSH (Lauterburg and Velez, 1988).  A number of 
different causes have been proposed.  These include reduced rates of GSH 
production (Lauterburg et al., 1984), increased efflux of GSH from the liver 
(Fernandez-Checa et al., 1989; Choi et al., 2000), reduced cysteine production 
and its diversion to produce taurine (Kim et al., 2003), and increased lipid 
peroxidative damage resulting from formation of acetaldehyde (Vina et al., 1980).  
For simulations of APAP metabolism in alcoholics the starting value of steady 
state hepatic GSH concentration were halved ((!!"#!"#$!!"#$  !"#$% 0 = !!"#!"#$% 0 2) 
(Lauterburg and Velez, 1988; Choi et al., 2000).  It has been shown that soon 
after persons stop consuming alcohol (24 hours, (Choi et al., 2000)), levels of 
hepatic GSH start to return to normal.  Accordingly, when accounting for the 
alcohol induced reduction of GSH production and increased efflux from the liver, 
the rate of hepatic GSH replenishment was augmented in a time dependent 
manner such that (!!"#!"#$!!"#$  !"#$% = !!"#!"#$%×!"!"#$!!"#) and: 
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where δ(t)=1 when t≤1440 minutes and δ(t)=0 when t>1440.   
6.  Effects of fasting on APAP metabolism 
When modeling effects of fasting on acetaminophen hepatotoxicity, it is important 
to account for the fact that hepatic carbohydrate reserves are lower during 



fasting, and this can result in a significant reduction in rate of APAP 
glucuronidation (Price et al., 1987; Price and Jollow, 1988; Price and Jollow, 
1989).  Fasting in rats has been shown to result in 40% reduction of 
glucuronidation and 30% reduction in rate of sulfation of APAP (Price and Jollow, 
1989).  Extreme fasting and uncontrolled diabetes can also result in stabilization 
of CYP2E1 mRNA (Gonzalez et al., 1991).  In rats, CYP2E1 is induced by 
approximately 30-60% after 24hr fasting (Hong et al., 1987; Johansson et al., 
1988).  For simulations of fasting, it was assumed that in humans levels of 
reduction of APAP-G and APAP-S production are similar to those in rats 
(!!!!!"#$%&'!"# = 0.6 and !!!!!"#$%&'!"# = 0.7).  It was also assumed that in fasting 
individuals the activity of oxidation reactions increases by 50% (!!!"#!!"#$%&'!"# =
1.5).   
Fasting has also been shown to reduce the ratio of liver to whole body weight by 
approximately 20% in fasting rats (Price et al., 1987).  Although fasting might 
reduce the size of human liver, our fasting simulations do not account for this 
phenomenon, and the liver volume remains constant for malnourished and 
fasting individuals.   
It has also been shown that fasting reduces the total GSH quantity in the liver 
due to a reduced rate of GSH production.  For the simulation of acetaminophen 
metabolism in malnourished/fasting persons, the initial hepatic concentration of 
GSH was reduced by 25% (!!"#

!"#$%&'  !"#$% 0 = !
!
!!"#!"#$% 0 ).  This value is based on 

measurements of GSH levels in protein for malnourished patients (Shi et al., 
1982) and agrees with similar GSH reductions in mice (~20%) (Price et al., 
1987).  Absence of nutrients also reduces the rate of GSH regeneration, and 
accordingly, we reduced the value for the starvation simulations (!!"#

!"#$%&'  !"#$% =
!
!
!!"#!"#$%). 

7.  Metabolism in alcoholic, chronic APAP users 
Table 3 shows the effects of the examined nutritional and lifestyle habits on 
different aspects of APAP metabolism in liver can be complementary or 
conflicting.  When modeling combined effects of two processes that alter different 
components of a system, such as chronic use of APAP and consumption of 
alcohol, it might be reasonable to assume that the effects could be combined.  
However, when processes alter the workings of the same reactions, especially if 
they are conflicting influences (like chronic APAP use and fasting), it would be 
unwise to make assumptions about the outcome.  For this reason, in this paper 
we have simulated drug metabolism in chronic APAP users who consume 
excessive amounts of alcohol but refrained from simulating APAP metabolism in 
any other combinatorial way, such as malnourished individuals who use the drug 
on a regular basis.  



Results	  and	  discussion	  
Famous Swiss-German alchemist Philippus Aureolus Paracelsus wrote:  “All 
things are poison and not without poison; only the dose makes a thing not a 
poison” (Krieger, 2001).  This statement is particularly apt for acetaminophen.  
While small quantities of APAP relieve suffering, relatively slight excess intake in 
some patients can result in acute liver damage.  Significant overdose of APAP 
causes mitochondrial dysfunction and centrilobular necrosis in the liver and can 
be lethal (e.g., (McJunkin et al., 1976; Nogen and Bremner, 1978; Price et al., 
1991)).  
Many drugs are toxic due to production of chemically reactive metabolites that 
deleteriously alter the normal biochemistry of a patient.  The amount of damage 
that these compounds cause depends on their concentration and metabolic half-
life.  Some of the toxic byproducts of drug metabolism are so short-lived that they 
never exit the organs in which they are formed.  On the other hand, chemical 
change of others can be slow enough that they enter the systemic circulation and 
are transported to other organs.   NAPQI, the toxic byproduct of APAP 
metabolism, is one of the former and does not leave the liver.   
NAPQI can bind to sulfhydryl groups of cellular proteins and cause oxidative 
stress. Experiments have shown that harmful covalent binding of NAPQI to 
proteins is preceded by significant depletion of glutathione in the liver (Mitchell et 
al., 1973; Davis et al., 1974) because low doses of NAPQI are rapidly detoxified 
by glutathione through conversion of NAPQI to glutathionyl acetaminophen 
(Mitchell et al., 1973; Mitchell et al., 1974).  Thus, as long as hepatic 
concentration of GSH remain sufficiently high, liver proteins are not altered 
(Jollow et al., 1973; Mitchell et al., 1973), and hepatotoxicity can be averted 
through replenishment of GSH and introduction of complementary antioxidants 
(e.g., treatment with N-acetyl-cysteine (Peterson and Rumack, 1977; Prescott et 
al., 1977)). 
A number of factors affect the rate of APAP and NAPQI metabolism in a patient 
(Larson, 2007).  The three that have the most widespread impact on the public 
are:  chronic use of APAP, fasting, and alcohol consumption. In cases where 
patients exhibited combinations (e.g. (Whitcomb and Block, 1994) of above noted 
conditions, it was not possible to quantify the effects of each factor.  This 
ambiguity about the quantitative effects of each condition has resulted in differing 
postulates about the safety of APAP and the primary culprit for predisposing 
some patients to show signs of liver damage following moderate overdoses (4-10 
g/day) or even uptake of therapeutic doses (4 g/day) (Whitcomb and Block, 1994; 
Prescott, 2001). 
Overall, any systemic perturbation that results in reduced glutathione 
concentration, induction of CYP enzymes, and reduced rates of sulfation or 
glucuronidation should be considered for increasing a patient’s susceptibility to 
hepatotoxicity.  Given the uncertainty associated with completeness of patient 
histories in clinical records and the difficulty of parsing the collected information 
to quantify the deleterious effects of various daily habits, in silico pharmacological 



analysis is the sole means by which we can use the available biochemical data to 
gain a quantitative understanding of kinetics of hepatotoxicity in compromised 
patients.  To this end, we developed a detailed PBPK model of APAP 
metabolism in humans and used it to simulate generation and detoxification of 
NAPQI for a number of prevalent scenarios.  To date a number of other 
pharmacokinetic models of APAP and GSH metabolisms have been developed 
(Chen and Gillette, 1988; Tone et al., 1990; Srinivasan et al., 1994; Chiba and 
Pang, 1995; Ben-Shachar et al., 2012; Remien et al., 2012; Westerhout et al., 
2012) and significantly contributed to our understanding of the dynamics of APAP 
induced hepatotoxicity.  However, each of these studies focused on a specific 
portion of the metabolic process and did not simulate and examine the combined 
effects of the noted determining factors on all important aspects of drug 
metabolism.  
  
1.  Model Validation 
In order to ensure that the incorporated kinetic parameters are correct, the 
model’s predictions were compared against clinical measurements (see Figure 
2).   The model predictions strongly agree with two sets of measured results 
(Rawlins et al., 1977; Kennedy and Van Rij, 2006).    
Next, depletion of GSH concentrations in the liver following uptake of different 
doses of APAP were examined (See Figure 3).  As noted in the methods section, 
the regeneration mechanism of GSH in the model has been parameterized so 
that intake of a single 15 g dose of APAP (generally accepted upper limit of 
APAP prior to generation of hepatotoxicity (Mitchell et al., 1974; Whitcomb and 
Block, 1994; Rumack, 2002)) depletes the liver GSH level by approximately 70%, 
and thus greater doses would dip GSH level below 30% of normal level and 
initiate liver damage.  
2.  Chronic APAP use 
Acetaminophen should be used cautiously when taken on a chronic basis 
because even for some patients without risks, APAP may be hepatotoxic at 
therapeutic doses (Bolesta and Haber, 2002).  Statistical analyses have shown 
that the odds of developing ALF, following use of therapeutic doses of APAP, are 
extremely small (0.4 per million adults over the age of 15 per year) (Sabaté et al., 
2011).  The PBPK model was used to determine if the recorded kinetic 
characteristics of APAP metabolic pathways can account for this rare 
phenomenon.  The model predicts that under normal conditions, continual uptake 
of 1 g of APAP every 6 hours results in approximately a 15% reduction in steady 
state levels of liver GSH (Figure 4), agreeing with recorded observations (Nuttall 
et al., 2003).  This level of GSH should sufficiently prevent hepatotoxicity in 
normal patients.  Furthermore, as can be seen in Figure 4, the simulations of 
GSH concentration, following continual uptake of 1, 2 and 5 g every 6 hours 
show that none of these regimens should result in a reduction of GSH levels 
bellow 30% of the normal steady state values. 



Hence, it can be deduced that the reported patients (who based on their 
collected history are not supposed to be at risk of APAP poisoning) must have 
some unique physiological characteristic that increases their susceptibility to 
oxidative damage. One possibility could be that for these individuals routes of 
APAP metabolism are not changed following chronic uptake of 1-2 g doses of 
APAP (Gelotte et al., 2007).  Based on measured single dose pharmacokinetics 
of APAP metabolism, the sulfation capacity of the liver sulfatransferases could be 
saturated and more of the drug would be shunted toward NAPQI production, 
specially following continual ingestion of high doses APAP.  Clinical studies of 
healthy patients ingesting multiple doses of APAP have shown that the serum 
sulfate concentration can drop significantly (Hendrix-Treacy et al., 1986).   
However, recent experimental examinations have shown that at higher doses, 
chronic uptake of APAP results in an approximately 23% increase in the 
clearance rate of APAP-G (Gelotte et al., 2007).  
Figure 4 shows the predicted transient hepatic concentrations of GSH with and 
without alterations in APAP metabolism.  Chronic uptake of APAP clearly 
behaves like hormesis.  The increased glucuronidation/reduced sulfation of 
APAP overall has a protective effect.  For example, the area under the curves 
from Figure 4 shows that following uptake of 1, 2 and 5 g of APAP every six 
hours for 5 days, diversion of APAP metabolism to glucuronidation reduces the 
need for GSH detoxification by about 1, 10, and nearly 50%, respectively.  While 
induction of UDP-glucuronosyltransferase appears to have a significant beneficial 
effect on diverting APAP away from NAPQI production, particularly at higher 
doses, the loss of the 1% improvement cannot explain the observed toxicity 
following therapeutic doses of APAP.   
Other possibilities for the observed phenomenon can be induction of NAPQI 
producing CYPs, reduced rates of hepatic GSH generation, or a combination of 
both.  According to model simulations, increasing the rate of CYPs by more than 
30 times will result in hepatotoxicity following periodic uptake of 1 g of APAP 
every 6 hours.  Such a drastic increase in CYP activity seems highly unlikely, and 
the mechanism of induction is unclear.  One possibility could be that like the 
behavior observed following interaction between CYPs and alcohol, acetone, or 
isoniazid (Ryan et al., 1986; Song et al., 1987), over an extended period of time, 
a compound that has not been considered as a part of a patient’s history, slowly 
induces enzymes such as CYP2E1 through ligand stabilization.  Then, a 
relatively rapid drop in concentration of that compound would result in much 
greater APAP oxidation. To date, a compound that could so drastically induce the 
activity of CYPs has not been found.  

The model predicts that decreasing the rate of GSH regeneration (i.e., !!"#!"#$%) by 
only a factor 5 would make chronic ingestion of 1 g of APAP every 6 hours toxic 
after about 1 day.  This metabolic change seems a lot more plausible as a cause 
for the observed phenomenon where therapeutic usage of APAP could lead to 
sever hepatotoxicity.  Fasting or poor nutrition is a prime candidate for why a 
person might present reduced GSH production capabilities.  A number of other 
studies have also suggested that reduced levels of GSH, resulting from poor 



nutrition, could result in elevated risk of APAP induced hepatotoxicity (e.g., 
(Whitcomb and Block, 1994; Prescott, 2001)).  Some herbal remedies and 
natural products have been recommended as protection against hepatotoxicity 
through scavenging of reactive oxidative species and disrupting cell death 
signaling mechanism (e.g., (Forster et al.; Oz et al., 2005; Chen et al., 2009; 
Wang et al., 2010; Galal et al., 2012)); however, depending on a variety of 
factors (like time of ingestion in relation to APAP uptake (Salminen et al., 2012)), 
the results might vary, and the treatment might actually potentiate hepatotoxicity.  
Accounting for such heretofore ignored factors could lead to answers about how 
therapeutic doses of APAP could lead to ALF.     
 
3.  Chronic alcoholism 
Activity of many CYPs can be altered in the presence of some drugs and other 
common biochemical substrates (Hewitt et al., 2007). Analysis of interaction of 
ethanol with APAP is very complicated, and the resulting conclusions can be 
controversial (Slattery et al., 1996; Prescott, 2001).  For example, in animals, 
concurrent ingestion of ethanol with APAP actually protects the patient against 
hepatotoxicity even if prior chronic intake of alcohol has induced liver’s CYP 
activities (Sato et al., 1981; Altomare et al., 1984; Thummel et al., 1989).  If one 
assumes that similar mechanisms govern alcohol-APAP interaction in humans as 
in animals, then alcohol could decrease, increase, or have no effect on the 
toxicity of APAP, depending on the timing and duration of alcohol consumption. 
The deleterious effects of alcohol on maintaining the normal GSH concentrations 
in hepatocytes are twofold.  First, chronic ingestion of alcohol has been shown to 
impair transport of GSH from hepatocyte cytosol to mitochondria while increasing 
efflux of GSH from the liver (Fernandez-Checa et al., 1989; Choi et al., 2000).  
There is some controversy about the identity of the causative agent of GSH 
depletion following alcohol consumption.  Some studies have shown that ethanol, 
rather than its metabolic products, alters in vivo regulatory events and causes the 
reduction of liver GSH (Speisky et al., 1988).  On the other hand, other studies 
have shown that although proximate metabolites of ethanol (acetaldehyde and 
acetate) by themselves appear to have limited effect on GSH levels, hybrid 
aldehyde adducts (e.g., malondialdehyde-acetaldehyde (Tuma, 2002)) and its 
role in enhancing lipid peroxidation (Hartley and Petersen, 1997) can deplete 
GSH.	  
Second, CYP2E1 is the primary P-450 responsible for metabolism of ethanol 
(Lieber and DeCarli, 1970; Koop et al., 1982) and is induced by the presence of 
this compound (Koop and Tierney, 1990) principally due to a post-transcriptional 
mechanism where presence of the substrate stabilizes the enzyme from 
degradation (Song et al., 1986).  Alcohol acts as a competitive inhibitor of the 
APAP oxidation reaction and while present in the body protects the liver against 
production of NAPQI.  However, after clearance of alcohol from the system, 
greater availability of CYP2E1 increases (up by a factor of 2) the rate of 
conversion of APAP to toxic NAPQI molecules (Thummel et al., 2000).   
Figure 5 shows the transient hepatic GSH levels following continual uptake of 



therapeutic doses of APAP after a period of extreme binge drinking (200 hours of 
continual blood alcohol level of 3g/L).  CYP induction only increases the need for 
GSH detoxification by approximately 7% more than that in a non-alcoholic 
person.   
Given the short half life of deleterious effects of alcohol consumption on hepatic 
GSH levels (~12 hours (Choi et al., 2000)), the most dangerous period for a 
person drinking and chronically taking APAP would be the first  12-18 hours after 
drinking has stopped.  During this period, if alcohol consumption reduces the 
hepatic steady state concentration of GSH and the rate of its regeneration to half 
the normal values, then consecutive uptake of supra-therapeutic doses of APAP 
can be toxic.  Interestingly, the model predicts that as long as the GSH 
production capacity of liver return to normal within a reasonable period of time 
(24-36 hours), and the detoxifying capacity of the liver is not challenged by other 
toxins, then chronic use of therapeutic doses of APAP should not result in liver 
injury. 
This result is in strong agreement with some of the published arguments that 
have reasoned that CYP induction cannot form the primary basis for the strong 
link between APAP induced hepatotoxicity and use of alcohol (Prescott, 2001).  
The main reason for increased cases of APAP-induced hepatotoxicity is reduced 
availability of GSH.  While depletion of hepatic GSH is a rare mode of toxicity for 
drugs (examples in (Kostrubsky et al., 2007; Dykens et al., 2008)), it is common 
for a variety of toxicants such as carbon tetrachloride (Jaeschke et al., 2013).  It 
can also occur in individuals consuming certain herbal medications (Senadhi et 
al., 2012) like Pennyroyal oil (Chitturi and Farrell, 2000).  Accordingly, one can 
argue that APAP is not unique in its toxicity to alcoholics and that for these 
individuals exposure to any compound that would be metabolized in the liver to 
produce reactive oxidative species could result in hepatotoxicity.    
4.  Fasting and Malnutrition 
Malnutrition is one of the primary instigators of hepatotoxicity following moderate 
(4-10 g/day) overdose of APAP (Whitcomb and Block, 1994).  The PBPK model 
predictions agree with these observations.  Figure 6 shows the model-predicted 
hepatic GSH levels following ingestion of 4 g of APAP.  The results indicate that 
the combined effect of reduced hepatic GSH levels and its rate of regeneration 
along with augmented enzymatic activities could make a single dose uptake of 4 
g of APAP harmful.  When the outcomes resulting from changes to enzyme 
activities are compared to those associated with reduced GSH levels, the 
deleterious effects seem to be of the same magnitude (Figure 6, green and blue 
lines respectively).  This result is significant because it indicates that treatments 
that only resupply the liver with antioxidants might not be enough to significantly 
reduce the risk of hepatotoxicity. 

Conclusions	  
The proportion of ALF cases in United States attributed to acetaminophen have 
been continually rising (Larson et al., 2005), and there has been a lot of debate 



about safety of this popular drug.  A number of different factors have been 
suggested as the primary cause of hepatotoxicity in patients.  In this study, we 
conducted a quantitative examination of the effects of chronic APAP use, alcohol 
consumption and malnutrition on increasing the risks of liver damage.  The 
results of our simulations show that there is a hormesis-like protective behavior 
following chronic consumption of APAP.  The shunting of metabolism to the 
glucuronidation pathway reduces production of toxic byproducts at higher doses, 
and this could have a significant protective effect.  
Our simulations show that alcohol drinkers who are chronic acetaminophen users 
have an increased risk of liver damage particularly within the first day following 
an episode of binge drinking.  However, these individuals are at risk from any 
compound that could be activated to act as an oxidizing agent, and therefore 
APAP is not unique in its toxicity.   
Finally, our analysis of APAP metabolism in fasting patients show that they are at 
a much greater risk of hepatotoxicity, resulting from a mild overdose (4-10 g), 
than healthy individuals.  In cases of such individuals, a combination of factors, 
including shunting of drug metabolism to oxidative pathways and reduced rate of 
glutathione metabolism, exacerbate the problem and complicate the treatment 
choices since focusing on only one of the above causes might not fully mitigate 
the problem. 
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Table 1.  Physiological parameters.  Volumes and blood flow values are from 
(Luttringer et al., 2003).  The partition coefficients were calculated using the 
formula from Poulin and coworkers (Poulin and Theil, 2000; Poulin et al., 2001).  
 
Organ  
(α) 

Volume  
!! 

(ml) 

Blood flow 
 !!  

(ml/min) 

Partition 
coefficients 
!!"!"
!:!"#$%# 

Adipose 
Bone 
Brain 
Gut 
Heart 
Kidney 
Liver 
Lung 
Muscle 
Rest of body 
Skin 
Spleen 
Blood 
     -Arterial 
     -Venous 

8372 
5992 
1400 
1197 
329 
308 
1799 
532 

28000 
13895 
2597 
182 

 
1799 
3598 

325 
325 
780 
1105 
260 
1235 
1625 
6500 
1105 
520 
325 
130 

 
 

0.312 
0.682 
1.05 
0.92 
0.852 
0.906 
0.93 
0.87 
0.88 

1 
0.853 
0.915 

 
Table 2.  Kinetic parameters of the model. 
Parameter Value Units Reference 
!!!!"#	  (1	  g/6	  hrs)	  
!!!!"#	  (2	  g/6	  hrs)	  
!!!!"#	  (1	  g/6	  hrs)	  
!!!!"#	  (2	  g/6	  hrs)	  

!!!"#$!!"#!"# 	  
!!!"#$!!"#!"# 	  
!!"!"
!"#$%&	  
!!"#!"#$% 	  

kII	  
!!
!"#$#%&'()*+(&'	  
!!
!"#!"#$%&	  
!!!"#	  

!!"#
!"#$#%&'()*+(&'	  
!!"#
!"#$%&'()	  
!!"#!"#	  

1.5 
2.25 
0.5 
0.3 

2.14 
0.5 

0.02 
0.0026 

1.92x106 

6.89 
0.097 
0.28 
0.97 

0.011 
0.035 

 
 
 
 
 
 
 
min-1 

ml/(mmol min) 
mmol/L 
mmol/L 
mmol/L 
mmol/(hr kg) 
mmol/(hr kg) 
mmol/(hr kg) 

(Gelotte et al., 2007) 
(Gelotte et al., 2007) 
(Gelotte et al., 2007) 
(Gelotte et al., 2007) 

(Thummel et al., 2000) 
(Lauterburg and Velez, 1988) 

(Larson, 2007) 
(Rumack, 2002) 

(Coles et al., 1988) 
(Reith et al., 2009) 
(Reith et al., 2009) 
(Reith et al., 2009) 
(Reith et al., 2009) 
(Reith et al., 2009) 

(Mitchell et al., 1973) 

	  
	  
	  
	  



Table	  3.	  	  Effects	  of	  different	  dietary	  and	  lifestyle	  factors	  on	  various	  components	  of	  
APAP	  and	  NAPQI	  metabolism.	  	  (é)	  Increased	  activity,	  (ê)	  decreased	  activity,	  ()	  
no	  effect.	  
	  

Habit	   Glucuronidation	   Sulfation	   Oxidation	   GSH	  
metabolism	  

Chronic	  APAP	  use	   é	   ê	   	   	  
Alcohol	  
consumption	   	   	   é	   ê	  

Fasting/Malnutrition	   ê	   ê	   é	   ê	  
	  

	  
	  
Figure	  1.	  	  Schematic	  representation	  of	  the	  PBPK	  model	  structure.	  	  Blue	  
compartments	  are	  the	  eliminating	  organs.	  
	  

	  



	  
Figure 2.  Predicted and measured acetaminophen plasma concentrations 
following single intravenous bolus injection of a 1 g dose.   The measured values 
are from (Rawlins et al., 1977)	  (n) and (Kennedy and Van Rij, 2006) ().	  
 

 
Figure 3.  Predicted glutathione depletion following single dose ingestions of 4 
(black), 10 (red), and 15 (blue) g of APAP.  The gray dashed line marks the 
minimum level of GSH that is necessary to prevent intrahepatic covalent binding 
by NAPQI. 
 



 
Figure 4.  Predicted liver glutathione concentration following chronic ingestion of APAP 
at 3 different daily doses (1 g/6 hours (black), 2 g/6 hours (blue), and 5 g/6 hours (red).  
Solid lines represent simulations with induction of APAP glucuronidation and reduction 
of APAP sulfation.  The gray dashed line marks the minimum level of GSH that is 
necessary to prevent intrahepatic covalent binding by NAPQI. Dashed curves are for 
simulations that do not incorporate the observed changes (Gelotte et al., 2007).  

 
Figure 5.  Predicted liver glutathione concentrations following chronic ingestion of 
therapeutic doses of APAP (1 g/ 6 hours). Black line shows GSH concentration in a 
normal person; Blue line shows GSH concentration following a period of binge drinking 
accounting only for the 2.14 times increase of the APAP oxidation pathway (Thummel et 
al., 2000);  Red line shows the model-predicted liver GSH concentration when 
accounting for both CYP induction and 50% reduction in steady state concentration of 
GSH and its regeneration rate. The gray dashed line marks the minimum level of GSH 
that is necessary to prevent intrahepatic covalent binding by NAPQI.  



 
Figure 6.  Model-predicted liver glutathione levels following ingestion of a 4 g dose of 
APAP.  The black line represents metabolism in a healthy well-fed person.  Red line 
represents metabolism in a malnourished individual.  Blue line represents GSH levels if 
only the GSH levels and its regeneration rates are altered as a result of malnutrition.  The 
green line represents the outcome if fasting only change the activity of APAP 
metabolizing enzymes. The gray dashed line marks the minimum level of GSH that is 
necessary to prevent intrahepatic covalent binding by NAPQI. 
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